¿Qué son las bandas/correas transmisoras de potencia y cómo se diseñan?

Las bandas o correas son componentes flexibles en tranmision de potencia, generalmente empleada en todas las industrias pero una de sus principales sectores en el cual las vamos a poder encontrar son en la industria automotriz para tomar la sincronía de los motores como una banda de distribución.

Estos elementos son utilizados para transmitir movimiento en componentes como compresores, alternadores, bombas de agua, bombas de liquido de dirección e inclusive elementos más complejos como un supercargador.

Las bandas son elementos que se encuentran montados en poleas y tensores los cuales en conjunto hacen que se genere un movimiento generando una transmision de un mecanismo en especifico

Las bandas deben soportar altas temperaturas, así como soportar tensiones, torques elevados, altas revoluciones por minuto, así como soportar las condiciones climáticas a las que estén sometidas hablando de temperatura y presión.

Cabe destacar que un sistema de transmision por bandas es bastante bueno y eficiente, así como su costo es más barato que un sistema de engranes cadenas pero tiene una desventaja, que su mantenimiento suele ser económico pero en cierto punto continuo debido a las propiedades del material que empieza a fisurarse y presentar holguras

Tipos de bandas

Bandas planas

Nos brindan una flexibilidad, absorción correcta de vibraciones así como una transmision eficiente a altas velocidades de giro (RPM), estas tienen la caracaterística de estar básicamente en poleas realetivamente pequeñas pueden ser empalmadas o conectadas para funcionamiento sinfin

Tiene una eficiencia del 98% acercándose mucho a los mecanismos por engranajes

Bandas en v

Son las más empleadas en la industria ya que sus características de ñas bandas en V funcionan mejor en velocidades que oscilan entre los 1500 a 6000 ft/min (8 a 30 m/s), sin embargo funcionan gasta 10,000 ft/min (50m/s)

Composición y Propiedades de materiales para bandas

Diseño de bandas

Cuando se emplea una transmisión de banda
abierta, los ángulos de contacto se determinan
mediante

Diseño de poleas en V

¿Qué es un motor TFSI/FSI y cómo funcionan?

El fabricante de automóviles Audi tiene implementado un tipo de inyección directa en su linea llamada FSI ( Fuel Stratified Injection) significa inyección directa de gasolina, una tecnología en la que el combustible se inyecta directamente en las cámaras de combustión, en lugar de hacerlo en el múltiple de admisión como comúnmente se diseñaban, esta acción le da una mejor eficiencia.

Los motores FSI logran un mayor rendimiento y una mejor dinámica que los motores convencionales, con mayor eficiencia. Ya sean de cuatro, cinco, seis, ocho, diez o doce cilindros.

Este tipo de motores logra aproximarse o en su defecto alcanza la denominada relación estequiométrica, un kilogramo (2.207 lb) de gasolina se mezcla con 14.7 kilogramos (32.41 lb) de aire, equivalente a un volumen de aproximadamente 12.400 litros (437.90 pies cúbicos), ya que el aire es extremadamente liviano.

Funcionamiento

Un turbocompresor o supercargador hace un TFSI por ello sus siglas que en ingles sin (Turbocharged Fuel Stratified Injection) que significa que es una Inyección de combustible estratificada con turbocargador y que el turbo es lo que lo deferencia de un de un FSI. En 2004, Audi fue el primer fabricante del mundo en convertir un FSI a un TFSI añadiéndole un sistema de sobre alimentación en dicho conjunto siendo así que el combustible inyectado directamente se atomiza intensamente en la cámara de combustión, que a su vez enfría las paredes de la cámara de combustión.

Esto resuelve un viejo problema con la tecnología turbo: la tendencia a la ignición espontánea temprana de la mezcla en los puntos calientes de la cámara de combustión debido a la fuerte acumulación de calor a alta compresión, un fenómeno conocido como detonación. Este sistema TFSI es capaz de obtener altas relaciones de compresión, en beneficio de la calidad de la combustión y la eficiencia termodinámica y, en consecuencia, la eficiencia del combustible.

FSI y TFSI de Audi obtienen combustible a través de un sistema de inyección common rail. En los motores de gasolina, sin embargo, son suficientes presiones de inyección significativamente más bajas de aproximadamente 150 bar (2176 psi),Las principales ventajas son en el diseño compacto del sistema y la libertad que permite controlar el evento de inyección.

En términos de detonación y avance de la chispa a presiones medias aumentado hasta 22 bar y para optimizar la estabilidad de la combustión bajo el cambio condiciones debidas al colector de escape integrado en términos de comportamiento de gas residual y proporción de aire. Además de esto, el movimiento de carga inducido por el puerto de entrada se ha aumentado de nuevo las mariposas giratorias. Como resultado de la posición optimizada, ligeramente retraída del inyector de alta presión, mezcla se ha mejorado aún más la homogeneización y, al mismo tiempo, se ha conseguido un efecto secundario positivo en la reducción de la carga de temperatura en el inyector

¿Qué son los inyectores Pico/Hold y cómo funcionan?

Los inyectores de pico/hold son inyectores de baja impedancia y generalmente se utilizan en sistemas de alto rendimiento . Debido a que son más costosos y complejos que los controladores de circuito saturado, generalmente no se usan con ECU de producción común. Cuando la ECU pide que se inyecte combustible, envía voltaje a través de los clips de alambre hasta que se alcanza un cierto nivel de corriente (la parte máxima) (varía según el tamaño del inyector, la empresa). Durante la duración de 1 pulso de ancho, esa corriente se reduce y se mantiene ligeramente (la parte de retención)

Funcionamiento

Estos tipos de inyectores y controladores también pueden denominarse detección de corriente o limitación de corriente. Los inyectores pico/hold son de baja impedancia (0,5-5 ohmios) y utilizan un controlador de pico/hold para activarlos.

El circuito depico/hold abre el inyector con un pulso de alta corriente (pico) y luego cambia la corriente hacia abajo para mantener el inyector abierto. La corriente pico abre rápidamente el inyector, mientras que la clasificación de corriente de retención más baja se usa para mantenerlo abierto mientras dura el comando de la ECU. Debido a que estos inyectores tienen partes físicas más grandes y, a menudo, funcionan contra alta presión de combustible, requieren una “patada” adicional de la corriente más alta para mantener estable el tiempo de apertura y cierre del inyector a la tasa de flujo de combustible más alta.

La corriente requerida para abrir un solenoide (inyector de combustible) es varias veces (generalmente 4 veces) mayor que la corriente necesaria para simplemente mantenerlo abierto. Entonces, la corriente se reduce automáticamente al nivel de retención suficiente durante la duración del pulso de entrada.

La ventaja de este diseño es el tiempo de “encendido” del inyector minimizado, lo que da como resultado una respuesta más rápida y la potencia total consumida por el sistema se reduce drásticamente. La desventaja es que aumenta el calor de la bobina, lo que puede provocar fallas con el tiempo.lo que puede provocar fallos con el tiempo.lo que puede provocar fallos con el tiempo.

                             

Posible daño a los inyectores:

  • Circuito abierto o cortocircuito a positivo oa tierra en los cables;
  • Conducción de conexión de enchufe deficiente o nula;
  • La conexión a tierra está suelta o corroída;
  • Fallo mecánico en componente.

COMPROBAR RESISTENCIA

  1. Asegúrese de que el encendido esté apagado y que el motor no esté encendido;
  2. Desconecte el conector del inyector de dos clavijas;
  3. Conecte un ohmímetro preciso entre los terminales del conector del inyector. La resistencia debe estar entre 2 y 5 ohmios;
  4. Enchufe el conector del inyector.

¿Qué es un inyector piezoeléctrico y cómo funciona?

En los motores de combustión interna a gasolina , la inyección directa de gasolina (GDI), inyección directa encendida por chispa (SIDI) e inyección estratificada de combustible (FSI), es una variante de la inyección de combustible empleada en la moderna Motores de gasolina de dos y cuatro tiempos.

La gasolina está altamente presurizada y se inyecta a través de una línea de combustible de riel común directamente en la cámara de combustión de cada cilindro, a diferencia de la inyección de combustible multipunto convencional que inyecta combustible en el tracto de admisión o puerto del cilindro. La inyección directa de combustible en la cámara de combustión requiere una inyección de alta presión, mientras que la inyección de baja presión se usa en el conducto de admisión o en el puerto del cilindro.

Los inyectores piezoeléctricos permiten un control electrónico preciso del tiempo y la cantidad de inyección de combustible, y la mayor presión que ofrece la tecnología common rail proporciona una mejor atomización del combustible. 

Para reducir el ruido del motor, la unidad de control electrónico del motor puede inyectar una pequeña cantidad de combustible justo antes del evento de inyección principal (inyección “piloto”), reduciendo así su explosividad y vibración, así como optimizando el tiempo de inyección y la cantidad para variaciones en calidad del combustible, arranque en frío, etc.

Funcionamiento

El funcionamiento de los inyectores piezoeléctricos es bastante similar al de los inyectores de solenoide, con la diferencia de que tienen un núcleo cerámico. Este se caracteriza por su capacidad para dilatarse o retraerse cuando recibe un pulso de corriente: el efecto piezoeléctrico. Sin embargo, para inyectores de este tipo factible, los fabricantes tuvieron que sortear una serie de problemas. En primer lugar, la dilatación de un elemento piezoeléctrico es extremadamente baja. Para obtener un grado de desplazamiento utilizable, se requiere una pila de no menos de 400 discos cerámicos para formar el elemento activo del inyector. Para accionarlos, se les aplica un impulso de cien voltios y un pequeño brazo de palanca amplifica su movimiento. Además, como ocurre con los inyectores electromecánicos, los discos piezoeléctricos no controlan directamente los movimientos de la aguja. También activan una pequeña válvula.

La principal ventaja de los inyectores piezoeléctricos es su velocidad de funcionamiento y la repetibilidad del movimiento de la válvula. Los movimientos de dilatación y retracción de los elementos piezoeléctricos son casi instantáneos. Esta velocidad de reacción permite una dosificación aún más precisa del combustible inyectado y un mayor número de inyecciones por ciclo.
El combustible bombeado ingresa al inyector a través del collar de alimentación de combustible y el exceso puede regresar al tanque a través del collar de retorno de combustible

El seguidor del árbol de levas presiona el émbolo en la parte superior para presurizar el combustible en el inyector. La válvula piezoeléctrica controla la liberación de este combustible a alta presión a través de la boquilla del inyector hacia la cámara de combustión. Aquí el combustible explota. Sin una válvula electrónica, el combustible se presurizaría y entraría a chorros en la cámara de combustión. 

El control de la sincronización, el volumen, etc. sería muy deficiente. Con una válvula piezoeléctrica, la sincronización, el volumen, etc. se pueden controlar con mayor precisión. La válvula piezoeléctrica puede abrirse y cerrarse tan rápido que es posible tener un número variable de inyecciones con una carga de combustible. Esto beneficia enormemente al ahorro de combustible y al control de la contaminación.

Al aplicar voltaje en el elemento piezoeléctrico, se crea una extensión. Esta extensión depende del voltaje y la cantidad de elementos piezoeléctricos.

  • El elemento piezoeléctrico se extiende;
  • La estructura de movimiento hidráulico se mueve hacia abajo;
  • La válvula de tres vías se mueve hacia abajo;
  • Se levanta la aguja.

Posibles averías de los inyectores:

  • Circuito abierto o cortocircuito a positivo oa tierra en los cables;
  • Conducción de conexión de enchufe deficiente o nula;
  • La conexión a tierra está suelta o corroída;
  • Fallo eléctrico interno: el actuador de pila piezoeléctrica interno se quema y cortocircuita la carcasa;
  • Fallo mecánico en componente.

COMPROBAR RESISTENCIA

  1. Asegúrese de que el encendido esté apagado y que el motor no esté encendido;
  2. Desconecte el conector del inyector de dos clavijas;
  3. Conecte un ohmímetro entre cada uno de los terminales del inyector y la carcasa del inyector. Ninguno debe estar conectado a la carcasa (tierra o “-“);
  4. Luego conecte el ohmímetro entre los terminales del conector del inyector. La resistencia debe estar entre 150 y 210 kiloohmios;
  5. Enchufe el conector del inyector.