BARRA ESTABILIZADORA funcionamiento en la suspención automotriz

La barra estabilizadora de la suspensión de un vehículo es una barra de acero con propiedades de naturaleza elástica, que se encuentra fijada en sus extremos a cada soporte de la suspensión de cada lado del mismo eje.

Todo vehículo circulando a velocidad por una curva se ve sometido a una fuerza centrífuga que hace que se incline hacia un costado, que puede generar una sensación de molestia en los ocupantes del vehículo, además de poder existir un peligro real de vuelco del vehículo si la velocidad fuera inadecuadamente excesiva.

Esto es así debido a la fuerza centrífuga que actúa sobre el vehículo, que es de dirección radial y ejerce un empuje sobre el vehículo que tira de él hacia el exterior de la curva.

Esta fuerza genera una transferencia de carga en el vehículo que hace inclinar a la carrocería de tal forma que una parte de la suspensión, la situada en el lado exterior a la curva, se comprima, mientras que la otra parte de la suspensión del vehículo, la situada hacia el interior de la curva, se expanda corriendo el riesgo de despegar la rueda de este lado del pavimento.

Este hecho, es decir, que las ruedas de un lado del vehículo tiendan a subir, mientras que las ruedas del otro lado tiendan a bajar comprimiéndose contra el suelo, va a generar un par de torsión que es absorbido por la barra estabilizadora, impidiendo que la carrocería se incline excesivamente hacia un lado y ejerciendo una resistencia al balanceo del vehículo.

Así, el movimiento vertical hacia arriba de la rueda situada del lado interior de la curva se transmite a la otra rueda del eje a través de la barra estabilizadora, que tiende a bajar la carrocería de ese lado comprimiendo el muelle de la suspensión, de manera que se consigue sumar la acción de los dos muelles, ayudando a mantener la estabilidad del vehículo.

Por ello, la barra estabilizadora se considera un componente elástico de la suspensión dado que actúa en parte también como muelle, especialmente cuando actúa sobre la rueda del lado del eje que tiende a subir.

Este mismo efecto se produce, no sólo cuando el vehículo toma una curva, sino cuando por ejemplo, una de las ruedas encuentra un bache o cualquier obstáculo, creando, al bajar o subir la rueda, un par de torsión en la barra que hace que la carrocería se mantenga en posición horizontal. De esta forma, como se ha dicho, se consigue sumar la acción de los dos muelles.

Por tanto, la barra estabilizadora de la suspensión de un vehículo trabaja a torsión, compensando los esfuerzos generados de una rueda sobre la otra del eje mediante una transferencia de peso de la rueda que se comprime hacia la rueda del lado que tiende a elevarse, aumentando así su adherencia.

De este modo, se evita que el muelle de un lado de la suspensión se comprima excesivamente, mientras que el otro muelle se expanda, pudiendo hacer perder el contacto de la rueda con el piso.

Qué es y como funciona el BCM (Body Control Module) o Computadora de chasis

Circuitos internos de un BCM de FIAT 500

El #BCM es una Computadora o mejor dicho es un modulo, Body Control Module o modulo de control de carroceria, generalmente ese modulo incluye la alarma, controla seguros, y muchas funciones como luces, limpia brizas , elementos de seguridad y confort del auto inclusive hasta inmobilizador.

Puede variar la configuración de este conforme al fabricante, hay muchos vehículos que utilizan como traductor al BMC para comunicarse con otros módulos, esto se refiere a que si el BMC presenta daños podemos tener problemas de fallo de comunicación, activación o desactivación de módulos y funciones del vehículo que facilitan la conducción y el confort de este.

El BCM es el módulo principal de la configuración central del vehículo.

Control de energía

La función de control de energía está integrada en el BCM.

El control de energía permite alimentar con tensión los distintos módulos de forma eficaz según las condiciones existentes. Para ello se utilizan distintos modos.

Según el estado de funcionamiento del vehículo, se utilizan cuatro modos de conducción distintos:

•Modo de producción
•Modo de transporte
•Modo normal
•Modo de colisión

El modo de producción está activo durante la producción del vehículo. En este modo se reduce la alimentación de tensión desconectando varios relés. Cuando el vehículo sale de producción, se desactiva el modo de producción y se activa el modo de transporte.

El modo de transporte está activado en el trayecto del punto de producción al Taller Autorizado. El vehículo se puede conducir sin que esto afecte a la seguridad de conducción.

Algunos módulos, p. ej., sistemas eléctricos (p. ej., sistema antirrobo, reloj y mando a distancia) se desactivan.

De esta forma queda garantizado que el nivel de carga de la batería sea suficiente cuando se entrega el vehículo al cliente.

El modo de transporte debe ser desactivado en el Taller Autorizado. Para ello es necesario, con encendido desconectado, pisar el freno cinco veces y pulsar el interruptor de las luces de emergencia dos veces antes de que transcurran 10 segundos.

Al desactivar el modo de transporte, el BCM pasa automáticamente al modo normal.

El modo normal garantiza el funcionamiento completo de todos los sistemas eléctricos.

El modo de colisión se activa en cuanto el RCM (módulo de control del sistema de seguridad pasivo) registra una colisión de fuerza suficiente.

Con ello se llevan a cabo las siguientes funciones:
•El vehículo se desbloquea de forma centralizada si estaba bloqueado en el momento de la colisión.
•Las luces de emergencia se activan.
•La bomba de combustible se desactiva.
•El calefactor adicional de combustible

Las causas por las cueles llegan a fallar los BCM son variadas pero las más generales son

  • Mal voltaje de batería
  • Cortos circuitos
  • Humedad
  • Corrosión
  • Software defectuoso

Para realizar programaciones en el BCM es indispensable disponer de una interfaz J2534 que es el módem que nos permitirá hacer el enlace entre el fabricante y nuestro módulo para repararlo, también es importante contar con software de agencia o dealer de la marca para poder hacer el enlace por lo que el uso de una PC o laptop será vital para el proceso.

Las reparaciones y programaciones que se le pueden hacer a este módulo es Reiniciar módulo o reflasheo, es decir iniciar desde cero el software del BCM para que pueda trabajar

Actualización de software : Este se realiza cuando el fabricante indica en una carta de diagnóstico por ejemplo que alguna falla en el sistema sólo se va a poder solucionar actualizando el software

Reemplazo de la unidad por cortos o por golpes que haya sufrido

Realizar operaciones con inmobilizador o sistema de robo

Todo lo anterior se debe de manejar con responsabilidad y cuidado es decir realizar reparaciones con repuestos originales, un diagnóstico utilizando datos en vivo en el scaner y cartas de diagnostico que nos permitan dar con la solución del BCM. Este punto es importante ya que los trabajos en BCM son costosos por lo que un trabajo preciso será una buena recomendación a otro cliente y un crecimiento del centro de servicio

INGENIERIA Y MECANICA AUTOMOTRIZ

Análisis de elementos finitos (FEA)

El análisis de elementos finitos (FEA) consiste en el modelado de productos y sistemas en un entorno virtual, con el objetivo de encontrar y resolver posibles problemas estructurales o de rendimiento (o problemas ya existentes). El FEA es la aplicación práctica del método de elementos finitos (FEM), que utilizan los ingenieros y científicos para modelar matemáticamente y resolver numéricamente complejos problemas estructurales, de fluidos y multifísica. El software de FEA se puede utilizar en una amplia gama de sectores pero habitualmente se emplea en el sector de la aeronáutica, la biomecánica y la automoción.

Un modelo de elementos finitos (FE) consta de un sistema de puntos, denominados “nodos”, que dibujan la forma del diseño. Conectados a estos nodos se encuentran los propios elementos finitos, que conforman la malla de elementos finitos y que contienen las propiedades estructurales y de material del modelo que definen cómo responderá este ante determinadas condiciones. La densidad de la malla de elementos finitos puede variar a lo largo del material, en función del cambio anticipado en los niveles de tensión de un área determinada. Las regiones que experimentan cambios importantes en la tensión suelen requerir una densidad de malla más elevada que aquellas que experimentan pocas variaciones en la tensión o incluso ninguna. Entre los puntos de interés se encuentran los puntos de fractura de un material probado previamente, las curvas, las esquinas, los detalles complejos y las áreas de tensión elevada.

Fuente de informacion: SIEMENS PLM

Descarga Aquí el material

¿Qué es el filtro antipolen y para qué sirve?

ESTE FILTRO RECIBE OTROS NOMBRES TALES COMO FILTRO DE POLEN, FILTRO DEL HABITÁCULO Y FILTRO DE INTERIOR Y NO HAY QUE CONFUNDIRLO CON EL FILTRO DE AIRE PUES UNO ES PARA EL MOTOR Y EL OTRO PARA LOS PASAJEROS.

Este filtro, que puede parecer que simplemente es un elemento más para el confort de los pasajeros, es también un elemento de seguridad activa en el caso de conductores alérgicos.

Se trata de un filtro cuya finalidad es la de depurar el aire que entra en el habitáculo de los ocupantes, reteniendo polvo, hollín y sobretodo polen y otras partículas en suspensión.
El material del que está fabricado es muy denso (bastante más que el del filtro de aire del motor) lo que le permite retener partículas mucho más pequeñas, del orden de los 0.0030 mm.

Aunque el intervalo de sustitución de estos filtros viene dado por el fabricante, es conveniente cambiarlos por periodos no superiores a los 15.000 Kms o un año(reduciendo estos si los trayectos se realizan por caminos polvorientos o similares) siendo estos intervalos de sustitución especialmente recomendables para el caso de ocupantes alérgicos, asmáticos, o personas mayores. Así mismo es conveniente que estos cambios se realicen al comienzo de la primavera pues es cuando el polen hace su presencia

Motor con cilindros opuestos (bóxer)

La disposición de cilindros opuestos, también conocida como motor bóxer, no es tan popular pero todavía se puede encontrar y cuenta con muchos seguidores. En este tipo de mecánica encontramos que los cilindros se colocan enfrentados en un ángulo de 180º. Esta disposición permite que la altura total del bloque se reduzca considerablemente (aunque la anchura sigue siendo notable) y se consiga un centro de gravedad bajo.

En la actualidad son solamente dos marcas las que apuestan por los motores bóxer. Subaru lleva más de medio siglo con estas mecánicas y se usa tanto en gasolina como diésel que van desde 114 CV del 1.6 atmosférico del Subaru XV hasta los 300 CV del 2.5 turboalimentado que equipa el WRX STI. En Porsche también se ha apostado por los bóxer, antes con mecánicas atmosféricas y ahora utilizando la turboalimentación.

A lo largo de la historia ha habido otros bóxer conocidos como el dos cilindros del Citroën 2CV o los de doce cilindros de Ferrari.

Señales que indican falla en la válvula PCV

La válvula PCV – fallas 

Si notas cualquiera de las siguientes fallas es probable que requieras reemplazar la valvula PCV de tu auto:

1. Humo blanco en el escape de tu motor
2. Filtro de aire y/o ductos de aire contaminados por aceite
3. Fallas de ralentí en el motor (variación de rpms)
4. Fugas de aceite en retenes o empaques
5. Códigos de falla relacionados con el cuerpo de aceleración, el sistema IMRC, sensor MAF e IAT.

Humo blanco en el escape:

Cuando la válvula PCV se daña y queda atascada en posición abierta permite que el aceite del motor viaje por el ducto que la conecta hasta las mangueras de la admisión del motor contaminando el filtro del aire, ductos, cuerpo de aceleración, control IMRC, etc.

Cuando el aceite llega a la cámara de combustión se quema junto con la mezcla de aire y gasolina provocando el humo blanco.

Filtro de aire contaminado:

Como vimos en el punto anterior, al atascarse en posición abierta el filtro del aire queda empapado en aceite perdiendo toda posibilidad de filtrar el polvo que entra por el ducto de admisión hacia el motor.

Fallas de ralentí:

Una vez contaminados los sensores en los ductos de admisión como son el sensor MAF, IAT, Cuerpo de aceleración e IMRC el motor puede tener fallas en la aceleración, apagarse al hacer un alto o simplemente dejar de acelerar.

Fugas en empaques y retenes:

Cuando la válvula PCV se atasca en posición cerrada, los gases generados por la combustión y vapores del aceite generan tanta presión que empiezan a dañar los empaques y retenes del motor hasta dañarlos.

El motor empezará a mancharse en su exterior permitiendo dañar más componentes o simplemente quedarse sin aceite.

COMPLETE #DASHBOARD LIGHT #SYMBOLS

Here are key symbols that should be on your fingertips
1. Indicator to push the clutch
2. Indicator to push the brake pedal
3. Locked steering-wheel
4. Full beam turned on
5. Low tire pressure
6. Sidelights on
7. Problems with headlight / tail-lights / signals bulbs
8. Problems with brake lights
9. Winter mode
10. Info indicator
11. The diesel auxiliary heater
12. Ice warning
13. Starting system problems
14. The key is not in the car
15. Key low battery
16. Warning distance to another car
17. Service warning light
18. Adaptive headlights turned on
19. Headlight angle adjustment 
20. Problems with the variable rear spoiler
21. Problems in triggering electric roof
22. Front airbag is switched off
23. Handbrake is on
24. Front fog lights turned on
25. Power steering system problems
26. Rear fog lights switched on
27. Low level of windscreen fluid
28. Worn brake pads
29. Cruise control is activated
30. Signal indicators
31. Trouble on the light sensor or rain sensor
32. Water in the fuel filter
33. Airbag switched off
34. Mechanical problem or electrical error
35. Dipped headlights turned on
36. Dirty air filter requires replacement
37. Parking sensors turned on
38. Problems with the diesel particulate filter (DPF)
39. Error – disconnection of the plug from the trailer
40. Air suspension problems
41. Warning for leaving your lane with lane assist system active
42. Problems with catalytic converter
43. Seatbelt warning
44. Warning parking light
45. Alternator or battery problems
46. ECO mode turned on
47. Downhill assist on
48. Cooling system problems
49. Problem with ABS
50. Problems with the fuel filter
51. Open door
52. Open bonnet
53. Fuel tank on reserve, need to fill the tank
54. Automatic gearbox problems
55. Speed limiter is active
56. Suspension problems
57. Front window defroster
58. Electronic Stability Program (ESP) is off
59. Open boot
60. Low oil pressure
61. The automatic windscreen wiper 
62. Engine problems or hazards
63. Rain sensor
64. Rear window defroster

Como funciona el sistema de aceleración electrónico ETC y el Sensor APP

(APP = Acelerator pedal position, ETC = Electronic Throttle Control)

A lo largo de la evolución de la era moderna, los fabricantes de vehículos han incluido sistemas automáticos en sustitución de los sistemas mecánicos, con el propósito de mejorar la eficiencia en el consumo de combustible, el confort, la potencia y el desempeño.

Debido a una limitante en la ECU para la protección del motor, estos sistemas no permiten arrancar el auto “patinando llantas” o que debido a un conductor novato el auto se apegue de manera inesperada, ni tampoco es posible revolucionar al máximo el motor mientras el auto está detenido.

En ese sentido, nos preguntamos ¿cuáles elementos conforman el sistema de aceleración electrónico y cómo funcionan?

En los autos con sistemas mecánicos, el ingreso de aire al motor se realizaba por medio del cable Bowden accionado por el motor. Por lo que este sistema no presenta ningún tipo de automatización, por lo que no existe un sistema de autodiagnóstico. Adicionalmente, en los sistemas de control de mariposa motorizado, se intenta copiar el principio del carburador, moviendo un elemento regulador del paso de aire, a solicitud del conductor por el accionamiento de un pedal.

En cambio, en los sistemas de aceleración electrónica, la entrada de aire no se controla mediante un cable, sino mediante una señal eléctrica. A medida que se cambia la posición del pedal, el sistema de control electrónico ordena al cuerpo de aceleración la apertura o cierre de la mariposa, según la acción del conductor y las condiciones de desempeño. Por ejemplo, la computadora puede activar modos específicos de seguridad o protección contra fallas, siendo de esta forma posible que un vehículo “no obedezca” al conductor si se reporta alguna falla en el sistema, porque es función del programa almacenado en la memoria de la ECU.

Componentes básicos del sistema electrónico de aceleración (varían de acuerdo al modelo)

1. Pedal del acelerador

Dependiendo del fabricante, el pedal del acelerador cuenta con dos o tres sensores. Al presionar el pedal, se envía una señal a la computadora, la cual interpreta la solicitud del conductor y ordena al cuerpo de aceleración la apertura de la mariposa, en función del requerimiento y de las condiciones de desempeño del vehículo. La electrónica de este dispositivo es muy básica.

Este dispositivo consta de dos sensores, a los cuales se les conoce con la nomenclatura APP1 y APP2, ambos para el monitoreo de la posición exacta del pedal. Fabricantes como GM y FORD utilizan hasta tres sensores para le verificación de la posición exacta del pedal. Lo cual disminuye las posibilidades de mediciones incorrectas., puesta la unidad de control verifica la correlación entre ambos (o entre los tres) sensores. Es decir, la ECU dispone de una estrategia redundante para la detección de fallas relacionadas con el pedal del acelerador.

2. Cuerpo de aceleración

Esta válvula regula la cantidad de aire que ingresa al motor, intentando copiar el sistema de regulación de aire que ofrecía al carburador, sólo que controlado electrónicamente.

El elemento regulador es la mariposa de aceleración, que es accionada por un motor y para lo cual cuenta con una interfaz electrónica que se comunica permanentemente con la computadora principal.

El cuerpo de aceleración consta de un actuador motorizado bipolar que, unido mediante un eje, coloca a la mariposa en la posición ordenada por la unidad de control, contando además con una interfaz electrónica. La mariposa tiene una posición de reposo considerada de emergencia, pues permite un ingreso de aire suficiente para mantener encendido el vehículo, aun en condiciones de fallas graves en el sistema de aceleración

INFORMACIÓN IMPORTANTE DEL CUERPO DE ACELERACIÓN (YOUTUBE)

3. Unidad de control o ECU

La responsabilidad de gestionar el sistema de control electrónico de aceleración recae sobre la computadora principal del vehículo. La ventaja de este sistema, es que automatiza muchas funciones que el usuario no podría controlar eficientemente y ello se traduce en mejoras como: ahorro de combustible, control de emisiones, manejo y arranque suaves, seguridad y protección de fallas, entre otros.

Una de las reparaciones de coche más comunes

Cambiar volante de motor:

Este elemento trabaja para el correcto funcionamiento del vehículo ya que se encarga de acumular inercia y regularizar el movimiento del motor. Se trata de una rueda muy pesada colocada en el extremo del cigüeñal más próximo a la caja de cambios. 

El volante puede resultar dañado por hacer patinar el embrague de manera innecesaria. Las averías en el volante motor suelen generar ruidos molestos que son característicos con el motor en ralentí y al apagarse. 

Ante la sospecha de una avería, conviene realizar una revisión, con un poco de suerte el problema dependerá de otra parte del embrague y podremos sustituirlo a tiempo.

Sin duda, realizar un correcto mantenimiento del vehículo y acudir al taller en las fechas marcadas para realizar las correspondientes revisiones preventivas pueden resultar fundamentales para nuestro vehículo y nuestro bolsillo.

¿CONOCES LAS VENTAJAS DE UNA BUENA COMPRESIÓN EN EL MOTOR?

Alguna vez te has preguntado ¿Por qué un motor tiene más potencia que otro de la misma cilindrada? Pues entre algunos otros factores importantes dentro de la generación de potencia del motor, está la relación de compresión.

¿Cómo se da esta relación? 

Este proceso se lleva a cabo primeramente mediante el conocimiento de cuál es el volumen de la cámara de compresión y el volumen de la cilindrada de nuestro motor.

Recordemos que el volumen de la cámara de compresión es todo lo que queda por encima de la superficie del pistón y todo lo que barre desde el punto muerto superior al punto muerto inferior se le denomina cilindrada unitaria.

De tal manera que la relación de compresión es la cantidad de veces que entra el volumen de la cámara en el volumen total del cilindro.

La relación de compresión se da al obtener una mayor presión en la cabeza del pistón, con mayor presión sobre el combustible dentro del cilindro y entre los beneficios que se obtienen por tener una buena relación están el aumento en la potencia, así pues el aumento de eficiencia contribuye a un factor más económico de su gasto y su mantenimiento, debido al menor recorrido del pistón dentro del cilindro para generar combustión.

Recuerda que mientras más se comprima el combustible, mayor será la energía que obtendremos.

SÍNTOMAS PARA IDENTIFICAR PROBLEMAS DE COMPRESIÓN 

Cuando un motor presenta problemas con la compresión se pueden dar algunos o varios de estos problemas:

  •  Expulsa humo excesivo de cualquier color.
  • Por la falta de potencia, es necesario acelerar más de lo normal.
  • Se eleva el consumo de combustible.
  • Al momento de estar detenido el auto, las revoluciones son muy variables.
  • Se presentan problemas con el arranque del auto.
  • Se apaga frecuentemente.
  • Finalmente, puede consumir más agua o refrigerante de lo normal.

(carplanet)

Ingeniería en Moldes de Inyección de plásticos

La ingeniería de moldes de plásticos, es un tema de estudio complejo pero bastante interesante, ya que nosotros podemos generar piezas plásticas a partir de moldes con la forma de esta pieza que requerimos, este es el primer post de Ingeniería, que tendremos en esta página y queremos que profundicen ustedes su conocimiento con el siguiente link de descarga que es un libro relacionado a moldes de inyección, en el área automotriz la inyección de plásticos es la manera más viable tanto en costo/tiempo que beneficia a las armadoras y auto partes, es importante destacar que el diseño de estos moldes es un proceso costoso y laborioso, sin embargo los resultados que vamos a obtener son muy precisos y con una buena calidad de terminado de pieza

DESCARGA LIBRO AQUÍ

EN VERDAD QUEREMOS QUE LE SAQUES PROVECHO Y EMPIECES A EMPAPARTE PARA DESPUÉS COMPRENDER LOS VÍDEOS DE ENSEÑANZA QUE ESTAREMOS IMPARTIENDO

ANÁLISIS DE ELEMENTOS FINITOS

01-automotive-NVH-brakeSqueal-vehicle-NVH-brake-squeal-analysis-finite-element-analysis-vibratio

Hace unos años, Boeing, empresa estadounidense especializada en aeronáutica y defensa, dio a conocer un documental en televisión sobre el desarrollo de sus aviones 777. Incluían una ‘crash test’ de un prototipo de ala. El ala fue expuesta a una prueba de peso en la que simulaba la aplicación de una fuerte presión aerodinámica durante un vuelo, especificándose una fuerza del 150%.

El proyecto que fue diseñado para experimentar la carga máxima en fuerzas G, siendo 4 G’s lo que soportó la estructura. Sin embargo, nunca se llegó a operar intencionadamente a ese nivel.

En el test, la estructura del ala falló cuando iba por 153% de carga. Dado que existe un peso considerable en el diseño de aeronaves con estas alas, este resultado fue un final extraordinarioLa precisión de este resultado requirió un excelente Análisis de Elementos Finitos (FEA), así como la caracterización de materiales, tolerancias dimensionales, métodos de fabricación exactos, y un banco de pruebas muy preciso.

No es necesario decir que, la deformación de la estructura fue un ‘desplazamiento enorme’ de manera que tuvo que emplearse un análisis no lineal.

El Análisis de Elementos Finitos (FEA) nació por primera vez en 1943 por Richard Courant, quien empleó el método Ritz de análisis numérico y la minimización en el cálculo de variables para obtener soluciones aproximadas de sistemas de vibración.

Poco después, un artículo publicado en 1956 por MJ Turner, RW Clough, HC Martin y LJ Topp estableció una definición más amplia del análisis numérico. El documento se centra en la “rigidez y deformación de estructuras complejas”.

A principios de los años 70, la FEA estaba limitada a ordenadores de la industria aeronáutica, la industria automotriz, defensa y nuclear. Dado el rápido descenso en el costo de las computadoras y el aumento en la potencia de cálculo de estas máquinas, la FEA ha evolucionado obteniendo una precisión increíble.

Según el autor, la palabra ‘elemento’ referida al ‘metodo de los elementos finitos’ varía desde un dominio triangular a una función de base linea, e incluso ambos.

Un diseñador interesado en dominios curvos, podría sustituir estos triángulos con curvas primitivas, en cuyo caso se debería describir el componente como curvilíneo. Por otra parte, algunos ingenieros relevan las piezas lineales por cuadráticas, polinómicas o triangulares. De esta forma, el autor podría denominar a la pieza como de ‘orden superior’ en vez de un polinomio de mayor grado.

El método de los elementos finitos no se limita a simples triángulos o tetraedros en 3 dimensiones, pero puede ser definido en dominios subcuadráticos (hexaedros, prismas, o pirámides en 3D). Las formas de orden superior (curvilíneos) se agrupan en conjuntos polinómicos y no polinómicos (una elipse o un círculo).

El método de elementos finitos se originó a partir de la necesidad de resolver la elasticidad y análisis estructural de problemas complejos en la ingeniería civil y la aeronáutica. Una variedad de especializaciones bajo el paraguas de la disciplina de la ingeniería mecánica (como la industria aeronáutica, biomecánica, y de automoción) comúnmente integran FEM (modelado de elementos finitos) en el diseño y desarrollo de sus productos.

Varios paquetes de FEM incoporan componentes térmicos, electromagnéticos, fluidos, y entornos de trabajo estructurales. En un simulacro estructural, FEM presta una tremenda ayuda en la visualización de fabricación rígida y resistente, además de la reducción de peso, materiales y coste.

El Análisis de Elementos Finitos (FEA) es una técnica numérica basada en ordenador que sirve para calcular la fuerza y el comportamiento de una estructura de ingeniería. Puede ser empleada para valorar la deflexión, el estrés, vibración, el comportamiento en bucle y muchos otros fenómenos.

Es capaz de ilustrar la deformación elástica o permanente. Se requiere de ordenador debido al astronómico número de cálculos que son necesarios para analizar estas estructuras. La potencia y los bajos costes de los ordenadores modernos ha convertido este tipo de análisis en un medio que usan muchas disciplinas y compañías.

Esta potente herramienta de diseño se ha traducido en una mejora significativa de la mejora la calidad de los bocetos de ingeniería y de los proyectos en muchas aplicaciones industriales. El modelado de componentes ha decrementado sustancialmente el tiempo necesario para llevar los productos desde el concepto hasta la línea de producción. Los beneficios de la FEM implican una mayor precisión, un planteamiento mejorado y un mejor conocimiento de los parámetros críticos de diseño, creación de prototipos virtuales, menos prototipos de hardware, un más rápido y menos costoso ciclo de diseño, una mayor productividad y mayores ingresos.

Cómo funciona el Análisis de Elementos Finitos

FEA utiliza un sistema de puntos llamados nodos, que juntos hacen una parrilla llamada malla. Esta malla está programada para contener las propiedades de los materiales y estructurales que definen cómo la estructura va a reaccionar a ciertas condiciones de carga. Los nodos se asignan a una determinada densidad por todo el material en función de los niveles de estrés esperados de un área en particular.

Las regiones que recibirán grandes cantidades de estrés por lo general tienen una densidad de nodo más alto que aquellos que experimentan poco o ningún estrés. Los puntos de cierto interés son: puntos de fractura, áreas interiores, esquinas, detalles de una determinada complejidad, y zonas de altas presiones.

La malla actúa como una tela de araña en la que a raíz de cada nodo se extiende un elemento de malla adyacente a cada nodo. Esta red de vectores está programada para contener las propiedades del material, llevando a cabo la creación de multitud de piezas.

De esta forma la estructura se divide en muchos bloques simples pequeños o elementos. El comportamiento de un elemento individual será descrito como un conjunto relativo simple de ecuaciones. Estas ecuaciones se complementarán unas a otras para formar el esqueleto entero, así como describen las reacciones de cada parte individual de la organización.

finite_element_analysis

El ordenador resolverá este gran conjunto de ecuaciones simultáneamente extrayendo la conducta de los cuerpos individuales. A su vez, se obtiene la tensión y la flexibilidad al que se somete el armazón, siendo comparable a materiales ya usados y que se conoce el esfuerzo que puede soportar evaluando la capacidad de aguante que tiene el diseño.

El término ‘elemento finito’ distingue a la técnica del uso de ‘elementos diferenciales’ infinitesimales empleados en cálculo, ecuaciones diferenciales, parciales y finitas. Sin embargo, a pesar de que el tamaño se divide en espacio finito, permite poca libertad de movimiento.

El Análisis de Elementos Finitos permite tratar con estructuras mucho más complejas gracias al análisis rápido que las computadores hacen de las derivadas parciales. Además, el estudio de FEA lidia con límites más complejos más que con ecuaciones diferenciales, dando respuesta a problemas estructurales del mundo real. Un estudio que se ha extendido a lo largo de más de 40 años.

El Análisis de Elementos Finitos habilita la evaluación detallada de la complejidad organizativa de un dispositivo, durante su planificación, ilustrando vía ordenador la adecuación de la fuerza del esqueleto, además de la posibilidad de mejorar el diseño durante la planificación, reduciendo los costes del trabajo de análisis.

Stress-Analysis-FEA

Estos análisis han sabido incrementar la calificación y la calidad de estas estructuras en bocetos llevados a cabo hace décadas.

A falta de síntesis virtual o numérica, los análisis han de hacerse a mano. Las hipótesis de simplificación requeridas a la hora de hacer cálculos puede traducirse en un diseño más conservador y pesado.

Un factor a considerar en la ignorancia reside en si realmente la estructura se adecúa a todos los tipos de carga. Cambios significativos adjuntan ciertos riesgos, por ello se necesitan los prototipos y las pruebas, aunque suponga un coste adicional.

Gracias al análisis de elementos finitos el peso de los diseños pueden ser minimizados, e incluso reducir el número de prototipos que serán fabricados. Las pruebas de campo se utiliza para establecer la carga sobre las estructuras, que serán tomados en consideración para hacer futuras mejoras en el diseño a través de FEA.

Las escuderías de Fórmula 1 se sirven principalmente de software comercial comprado, que cuestan alrededor de entre 1.000 y 5.000 dólares.  Estos programas ofrecen amplias capacidades, como deformación plástica o el estudio de estructuras de impacto. Los paquetes de elementos finitos pueden incluir previos procesadores que se emplean para originar geometrías, o la posibilidad de importar archivos de CAD producidos por otro tipo de software.

Este software introduce módulos de creación de mallas para analizar el problema establecido, y poder comprobar los resultados obtenidos. La salida se puede representar en forma impresa, tales como mapas de contorno de estrés, parcelas de deflexión y gráficas de los parámetros de salida.

La elección del tipo de ordenador se basa principalmente en el tipo de estructura a evaluar, el nivel de detalle requerido y el tipo de análisis. Estos análisis pueden tomar minutos, horas o incluso días. Para bocetos extremadamente complejos se utilizan los súper computadores.

Dependiendo de la complejidad de las estructuras a ser estudiadas y el volumen de la fabricación, el gasto para el hardware de FEA puede ser pequeño en comparación con el ahorro en peso y coste de construcción que pueden resultar las mejoras en el diseño, y la velocidad de análisis. El gasto puede ser muy pequeño en comparación con el coste de un fallo en el diseño de una pieza de Fórmula 1.

La finalidad del análisis de elementos finitos incluyen una comprensión de la mecánica de la ingeniería (resistencia de materiales y mecánica de sólidos), así como los fundamentos de la teoría que subyace al método de los elementos finitos. Un analista ha de entender los métodos numéricos básicos. Una carrera de ingeniería es lo normal, pero no es un requisito absoluto.

El uso de un programa de elementos finitos en particular demanda de bastante familiaridad con la interfaz del programa con el fin de crear, cargar y revisar modelos. Además de la comprensión de una variedad de temas de modelado de elementos finitos y una apreciación de la especialidad en la que el trabajo de diseño se lleva a cabo.

El análisis estructural se compone de modelos lineales, en los que hay parámetros simples y asumen que el material no se deforma plásticamente, y modelos no lineales, que consisten en subrayar el material más allá de sus capacidades elásticas variando con la cantidad de deformación.

800px-Beam_mode_6

Se emplea el análisis de las vibraciones de un objeto para comprobar la resistencia de un cuerpo a vibraciones aleatorias, choque e impacto. Cada una de estas incidencias en la frecuencia puede transformarse en una resonancia y el subsecuente fallo.

La configuración de una pieza puede ser sintetizada para una pequeña deflexión y propiedades elásticas (análisis lineal), pequeñas deformaciones y propiedades plásticas (no lineal), una gran deflexión y propiedades elásticas (geometría no lineal) y grandes deflexiones simultáneas con propiedades plásticas.

Las propiedades materiales plásticas se definen cuando la deformación va más allá del rendimiento de un objeto, quedando permanente el cambio al eliminarse la tensión aplicada.

Otros análisis típicos están sujetos también a evaluación de la frecuencia natural de vibración, como es el cálculo de ondas. Estable, transitorio, y vibraciones aleatorias se puede recoger en este campo de estudio.

La construcción de un monoplaza de Fórmula 1 u otro coche de carreras, requiere un análisis preciso de las características estructurales y sus restricciones. Hoy en día, los materiales compuestos de fibra de carbono son un factor significativo en el diseño de Fórmula Uno. La fibra de carbono, sólo representa el 20% del peso del coche, pero el 80% en volumen estructual del mismo.

El chasis monocasco de un monoplaza de F1 es un estructura en forma de sandwich, dicho vulgarmente, hecho de fibra de carbono reforzado con polímero, compuesto de hojas de alto rendimiento y un núcleo de nido de abeja Nomex. Compuestos de gran resistencia, con resinas endurecidas de clase aeroespacial que se utilizan con motivo de una mayor relación de seguridad y rendimiento/peso. Todos los puntos de anclaje para el propulsor, suspensiones, entradas de aire, etc., están fabricados a través de insertos empotrados en una pila de laminación durante la fase de producción.

f1-chassis-fea

Con el fin de minimizar el peso y el diferencial de expansión térmica, y maximizar la adhesión, las placas laminadas se crean al máximo grosor (aproximadamente 18 mm) para ser mecanizadas a las dimensiones y espesor requeridas.

Las regulaciones de seguridad son el principal motor en el diseño de un chasis, desde el punto global, como desde el punto de vista de los refuerzos locales, ya que la FIA impone un gran número de test de impacto antes de aprobar un monoplaza.

Todos ellos se simulan previamente en un ambiente recreado mediante el análisis de elementos finitos. Algunos de ellos pueden ser replicados de cerca, mientras que otros no pueden, por ejemplo, pruebas de penetración. Mientras una simulación realista no pueda ser llevada a cabo, un cálculo correlacionado simplificado se ha validado durante años de experimentos.

Dentro de estas limitaciones, los ingenieros de diseño constantemente buscan por una innovación técnica que aporte una fracción de segundo por vuelta. Al final, cada máquina es rediseñada innumerables veces antes y durante el transcurso de una temporada.

El planteamiento de un monoplaza de Fórmula Uno también es inusual respecto al resto, ya que los ciclos llevados a cabo en la industria aeroespacial o marina, comiezan con un boceto en CAD migrando luego el análisis, mientras que el Fórmula 1 empieza con la optimización de la simulación de un entorno FEA, alimentado por el diseño del año anterior, originando una nueva simulación de proyecto.

La información que contribuye el análisis de elementos finitos son transferidos a un ambiente CAD para crear los nuevos trazos, incluyendo las capas de fibra de carbono, el núcleo y multitud de otras variables.

El grupo de trabajo de ordenador de una escudería se compone de 10-20 personas cubriendo FEA, CFD, el cuerpo, y el análisis y diseño de los sistemas hidráulicos. Aproximadamente dos meses se tarda en definir el primer planteamiento de la estructura del chasis. El resto del tiempo de la temporada, un 25% del potencial del equipo se dedica a la optimización, refinamiento y otros cambios.

El flujo de trabajo del diseño estructural del chasis monocasco, los problemas conceptuales referidos a los controles de regulación y el proceso de optimización, requiere un análisis muy preciso y sencillo de utilizar.

Actualmente, la mayoría de las escuadras usan NeiNastram, ANSYS o el software FLUENT para el análisis estático FEA, estudio de ondas y el contacto con la superficie. Todos los cálculos se correlacionan con las medidas experimentales, lo que permite un continuo perfeccionamiento de las metodologías y los datos del material.

fea2

Con el fin de alcanzar los objetivos definidos anteriormente, multitud de ejecuciones de mejora se recrean al modificar el chasis, los refuerzos, locales y el material empleado. En esta fase, es importante que el programa FEA sea eficiente manejando y editando el modelo actual, solventando el problema y dando información detallada y precisa, para que los ingenieros decidan los consecuentes cambios con éxito.

Normalmente, el método FEA es la opción más elegida en los distintos de análisis de la mecánica estructural (dando resultado a la deformación y la tensión en cuerpos sólidos o la dinámica de estructuras), mientras que la Dinámica Computacional de Fluidos (CFD) tiende a usar el modelado dinámico de fluidos o volúmenes finitos (FVM), especialmente para tratar los problemas de flujos externos alrededor del coche.

Durante años, el mayor problema en este campo, con el variado número de software, era importar y exportar los resultados de un programa a otro.

Distintos tipos de software se han programado para unir estas herramientas de análisis estructural con CFD, solventando la interacción con las estructuras de flujo.

Típicamente, el transcurso del aire producen presiones y/o temperaturas que deforman el armazón de contacto. A su vez, estas deformaciones estructurales cambian el campo de flujo. La capacidad del software para recrear la interacción de una estructura flexible sumergida en un campo de flujo en movimiento, es un componente crítico de la fase de diseño para muchos campos de la ingeniería.

La interacción de la estructura de flujo (FSI) es de vital importancia en la determinación de la estabilidad y la respuesta de un ala de avión. De esta forma, se estudia la respuesta de un sensor de alta presión que se introduce en un tubo de flujo (llamado comúnmente como túnel del viento) o un alerón que genera downforce en un coche de carreras.

La importancia de esta herramienta de diseño a menudo se ve ensombrecida por la dificultad al generar modelos numéricos para un problema FSI además del tiempo requerido en establecer una malla de calidad. El modelado se complica aún más por los distintos requisitos de malla para los dominios estructurales y de fluidos.

Fuentes: formula1-dictionary, car bibles, google

Lo que debes de saber acerca de los fusibles

El fusible está diseñado para proteger las partes más importantes de un sistema eléctrico del sobrecalentamiento y los daños relacionados como lo vimos en artículos anteriores. Cuando ocurre una sobretensión de la corriente, el alambre que se encuentra al interior del fusible se quema y corta la conexión con el circuito.

Aunque suena fácil y entendible existen muchas dudas al respecto de los fusibles y en el presente artículo vamos a resolver muchas de estas dudas, esperamos solucionar la mayoría de ellas.

¿Puedo provocar una avería aún mayor por cambiar el fusible?
No es posible, lo único que puede pasar es que el fusible vuelva a fundirse, el sistema volverá a quedar inutilizado hasta tanto se resuelva el corto.

¿Cómo sé si la avería de la que me está avisando es grave o no?
Será una avería grave probablemente un cortocircuito si el fusible se ha fundido y, nada más cambiarlo, se vuelve a fundir.

¿Funcionará el sistema sobre el que actúa el fusible en caso de que éste se funda?
No, en caso que el fusible en cuestión es el que activa el airbag, el sistema queda inoperante, y sin los sistemas que controle este mismo fusible. Al cambiar el fusible el sistema vuelve a funcionar, pero si se rompe de nuevo volverá a quedar inoperante.

¿Cuándo debo acudir al taller?
Lo recomendable es que se acuda siempre al taller, aunque usted haya cambiado este elemento puede volver a fundirse, es importante revisar el circuito para revisas que causo el fallo del fusible, que por lo general es un corto.

¿Y si pongo un fusible de mayor amperaje del que debe llevar?
Es posible que se provoque otra avería grave en el sistema, o que afecte ciertos componentes. Por ejemplo, si el fusible corresponde al del motor del elevavidrios, lo más posible es que este se dañe.

¿Dónde comprarlos?
En tiendas de repuestos, en centros del automóvil, en las grandes superficies o en los talleres oficiales.

¿Por qué tantos colores?
Tienen una mera función identificativa: los naranjas son de 5A; los rojos, de 10A; los azules, de 15A; los amarillos, de 20A; los blancos, de 25, los verdes, de 30.