¿Qué son los engranes de Piñón y cremallera y cómo se diseñan?

Los sistrmas de engranes de íñon y cremallera se utilizan para convertir el movimiento giratorio en movimiento lineal. Una cremallera tiene dientes rectos cortados en una superficie de una sección cuadrada o redonda de la barra y funciona con un piñón, que es un engranaje cilíndrico pequeño que se engrana con la cremallera.

En general, la cremallera y el piñón se denominan colectivamente “cremallera y piñón”. Hay muchas formas de usar engranajes. Por ejemplo, como se muestra en la imagen, se usa un engranaje con la cremallera para girar un eje paralelo.

Si la aplicación requiere una larga longitud que requiere múltiples cremalleras en serie, tenemos bastidores con las formas de los dientes configuradas correctamente en los extremos. Estos se describen como “cremalleras con extremos mecanizados”. Cuando se produce una cremallera, el proceso de corte de dientes y el proceso de tratamiento térmico pueden hacer que intente salir de la realidad. Podemos controlar esto con prensas especiales y procesos correctivos.

Hay aplicaciones en las que la cremallera es estacionaria, mientras el piñón atraviesa y otras donde el piñón gira sobre un eje fijo mientras la cremallera se mueve. El primero se usa ampliamente en sistemas de transporte, mientras que el segundo se puede usar en sistemas de extrusión y aplicaciones de elevación / descenso.

Como elemento mecánico para transferir el movimiento rotativo a lineal, las cremalleras de engranajes a menudo se comparan con los husillos de bolas. Hay ventajas y desventajas para usar cremalleras en lugar de tornillos de bola. Las ventajas de una cremallera son su simplicidad mecánica, gran capacidad de carga y sin límite de longitud, etc. Sin embargo, una desventaja es la reacción. Las ventajas de un husillo de bolas son la alta precisión y menor holgura, mientras que sus defectos incluyen el límite de longitud debido a la desviación.

La cremallera y los piñones se utilizan para mecanismos de elevación (movimiento vertical), movimiento horizontal, mecanismos de posicionamiento, topes y para permitir la rotación sincrónica de varios ejes en maquinaria industrial en general. Por otro lado, también se utilizan en sistemas de dirección para cambiar la dirección de los automóviles. Las características de los sistemas de piñón y cremallera en la dirección son las siguientes: estructura simple, alta rigidez, pequeña y ligera, y excelente capacidad de respuesta. Con este mecanismo, el piñón, montado en el eje de dirección, se engrana con una cremallera de dirección para transmitir el movimiento giratorio posteriormente (convirtiéndolo en movimiento lineal) para que pueda controlar la rueda. Además, la cremallera y los piñones se utilizan para otros fines, como juguetes y puertas laterales deslizantes.

Diseño y fórmulas

En el sector atomotriz

El mecanismo de dirección se utiliza para cambiar la dirección de los automóviles y se clasifican principalmente en tipos de cremallera y piñón.

De estos dos, el mecanismo de dirección tipo piñón y cremallera se ha convertido en la corriente principal utilizada en muchos automóviles pequeños. Su construcción es simple con otras características como peso ligero, alta resistencia, baja fricción, capacidad de respuesta superior, etc.

El mecanismo de dirección de tipo cremallera y piñón consiste en un piñón unido a la punta del eje de dirección en el que está montado el volante. El piñón está engranado con una cremallera para que el movimiento del mango gire el piñón que a su vez mueve la cremallera lateralmente. La rueda se mueve hacia la izquierda y hacia la derecha a través del sistema de tirantes conectados a los extremos del bastidor.

¿Qué son las Cadenas de Transmisión y cómo se diseñan para la industria Automotriz?

Los sistemas de transmisión por cadena se emplean para transmitir movimiento entre dos ejes paralelos que se encuentran alejados entre sí tal es el caso de las cadenas de distribución de motor que une el árbol de levas con el cigüeñal mediante el movimiento de los sprockets de los ejes del cigüeñal y árbol de levas y este movimiento lo permite en sincroniza gracias a la cadena que esta fabricada con fundiciones de acero gris así como acero fundido

Las transmisiones por cadena son menos sensibles a la suciedad y a la falta de mantenimiento. que los engranajes y otras unidades, también se pueden usar en altas temperaturas de funcionamiento Las cadenas de rodillos de acero se utilizan en todo Ingeniería. Se utilizan en la fabricación de máquinas herramientas, en la construcción de vehículos y motores.

Las ventajas que tienen las cadenas es que pueden tener distancias ilimitadas entre los centros de los ejes, así como un tamaño reducido y facilidad de ensamblaje, flexibilidad así como soportar altas temperaturas de operación y presión

Componentes

Tipos de cadenas

Medidas de cadenas

Diseño

La forma de las ruedas de cadena está determinada por el tamaño de la cadena, número de dientes y el par a transmitir.

Ruedas con los cubos permiten la transmisión de un par más alto, mientras que la placa las ruedas solo pueden usarse para la transmisión de pares más pequeños.

Cálculo de velocidad de cadena


Dimensiones de cadenas automotrices

¿Qué es un engrane cónico y cómo se diseña?

Los engranes cónicos son empleados comúnmente para transmision de potencia entre dos arboles cuyos ejes se cortan, Los ángulos pueden cortarse a cualquier ángulo, el más empleado es el de 90°.

Son muy parecidos a los conos rodantes que tienen el mismo ápice. Los dientes son de la misma forma que la de los dientes de engranes rectos, pero son un poco más delgados hacia el ápice del cono.

La ventaja de esto es que muchos términos de ángulos rectos aplica también para engranes cónicos

Fórmulas de trabajo de engranes cónicos

¿Qué es un Engranaje Helicoidal y cómo se diseñan?

Los engranajes helicoidales y cónicos-helicoidales están diseñados para aplicaciones difíciles tales como los transportadores en la minería, plantas papeleras, extrusoras, coladas continuas o grúas de puertos.

Estos engranajes deben proporcionar un alto nivel de fiabilidad operativa en condiciones difíciles, como entornos calientes, húmedos y polvorientos, a velocidad muy baja y con cargas pesadas. El reto consiste en mejorar el rendimiento, haciendo posible al mismo tiempo una producción modular rentable.

Los engranajes helicoidales ofrecen un refinamiento sobre los engranajes rectos. Los bordes de los dientes no son paralelos al eje de rotación, pero están posicionados en angulo. Ya que el engranaje es curvo, este angulo causa que la forma del diente pertenezca al segmento de una hélice. Engranajes helicoidales pueden ser acoplados en paralelo u orientación cruzada. La primera se refiere a cuando los ejes están en paralelo; esta es la orientación mas común. En la segunda, los ejes no son paralelos.

Para dientes en angulo se acoplan de manera mas gradual que los engranajes de diente recto lo que causa una operación mas suave y sin ruido.

En engranajes helicoidales paralelos, cada par de dientes hace contacto en un solo punto del engranaje; una curva móvil de contacto crece gradualmente a lo largo de la cara del diente hasta un cierto máximo después del cual disminuye hasta terminar contacto en un solo punto en el lado opuesto.

En engranajes rectos los dientes se acoplan súbitamente en una línea de contacto a lo largo de todo el ancho lo que causa stress y ruido. Engranajes rectos generan un sonido característico a altas velocidades y no pueden soportar tanta torsión como los engranajes helicoidales.

Mientras que engranajes de ángulo recto son usados en aplicaciones de baja velocidad y situaciones donde el control de ruido no es un problema, el uso de engranajes helicoidales es indicado cuando la aplicación requiere alta velocidad o gran transmisión de potencia.

Angulo

El ángulo β que forma el dentado con el eje axial deriva de la hélice, es importante considerar que el ángulo tiene que se igual para las dos ruedas que engranan pero de orientación contraria.

El valor se establece de acuerdo con la velocidad que tenga la transmisión:

  • Velocidad lenta: β = 5° a 10°.
  • Velocidad normal: β= 15° a 25°.
  • Velocidad elevada: β = 30°.

¿Qué son los engranajes planetarios y cómo funcionan?

Los engranajes planetarios es un conjunto de engranajes con el eje de entrada y el eje de salida alineados. Se utiliza una caja de engranajes planetarios para transferir el mayor par en la forma más compacta (conocida como densidad de par).

El centro de aceleración de la bicicleta es un gran ejemplo de un mecanismo de rueda planetaria: ¿Alguna vez se ha preguntado cómo puede obtener tanta potencia y capacidades en un centro tan pequeño? Para un cubo de tres velocidades, se utiliza un sistema de engranaje planetario de una etapa, para un cubo de cinco velocidades de 2 etapas. Cada sistema de engranaje planetario tiene un estado de reducción, un acoplamiento directo y un modo de aceleración.

En términos matemáticos, la relación de reducción más pequeña es 3: 1, la más grande es 10: 1. En una relación de menos de 3, el engranaje solar se vuelve demasiado grande contra los engranajes del planeta. En una proporción superior a 10, la rueda solar se vuelve demasiado pequeña y el par caerá. Las relaciones son generalmente absolutas, es decir, un número entero.

¿Dónde se utilizan los sistemas de engranajes planetarios?

Los engranajes planetarios a menudo se usan cuando el espacio y el peso son un problema, pero se necesita una gran cantidad de reducción de velocidad y torque. Este requisito se aplica a una variedad de industrias, incluidos tractores y equipos de construcción, donde se necesita una gran cantidad de torque para conducir las ruedas. Otros lugares donde encontrará juegos de engranajes planetarios incluyen motores de turbina, transmisiones automáticas e incluso destornilladores eléctricos.

Los sistemas de engranajes planetarios pueden producir una gran cantidad de torque porque la carga se comparte entre múltiples engranajes planetarios. Esta disposición también crea más superficies de contacto y un área de contacto más grande entre los engranajes que un sistema de engranaje de eje paralelo tradicional. Debido a esto, en la carga se distribuye de manera más uniforme y, por lo tanto, los engranajes son más resistentes al daño.

La forma más básica de engranaje planetario implica tres conjuntos de engranajes con diferentes grados de libertad. Los engranajes planetarios giran alrededor de los ejes que giran alrededor de un engranaje solar, que gira en su lugar. Una corona dentada une los planetas en el exterior y está completamente fija. La concentricidad del planeta que se agrupa con el sol y los engranajes anulares significa que el par se realiza a través de una línea recta. Muchos trenes de potencia son “cómodos” alineados en línea recta, y la ausencia de ejes compensados ​​no solo disminuye el espacio, sino que elimina la necesidad de redirigir la potencia o reubicar otros componentes.

En una configuración planetaria simple, la potencia de entrada gira el engranaje solar a alta velocidad. Los planetas, espaciados alrededor del eje central de rotación, se engranan con el sol y con la corona dentada fija, por lo que se ven obligados a orbitar a medida que ruedan. Todos los planetas están montados en un solo miembro giratorio, llamado jaula, brazo o portador. A medida que el porta planetas gira, ofrece una salida de baja velocidad y alto par.

Relación entre los engranajes en un sistema de engranajes planetarios

Para determinar la relación entre el número de dientes del engranaje solar (za), los engranajes planetarios B (zb) y el engranaje interno C (zc) y el número de engranajes planetarios N en el sistema, estos parámetros deben satisfacer el siguientes tres condiciones:

Condición No.1

zc = za + 2 zb (17.1)
Esta es la condición necesaria para que las distancias centrales de los engranajes coincidan. Dado que la ecuación es verdadera solo para el sistema de engranajes estándar, es posible variar el número de dientes usando diseños de engranajes desplazados de perfil.
Para usar engranajes desplazados de perfil, es necesario hacer coincidir la distancia central entre el sol A y los engranajes del planeta B, a1, y la distancia central entre el planeta B y los engranajes internos C, α2.
α1 = α2 (17.2)

Condición No.2

fórmula-17.3


Esta es la condición necesaria para colocar engranajes planetarios espaciados uniformemente alrededor del engranaje solar. Si se desea una colocación desigual de engranajes planetarios, entonces se debe satisfacer la ecuación (17.4).

fórmula-17.4


Donde θ : la mitad del ángulo entre engranajes planetarios adyacentes (°)

Fig.17.2 Condiciones para seleccionar engranajes

Condición No.3

fórmula-17.5
fórmula-17.6


Satisfacer esta condición asegura que los engranajes planetarios adyacentes puedan operar sin interferir entre sí. Esta es la condición que debe cumplirse para un diseño de engranaje estándar con la misma colocación de engranajes planetarios. Para otras condiciones, el sistema debe satisfacer la relación:

Donde:
dab: Diámetro de la punta de los engranajes planetarios
α1: Distancia central entre el sol y los engranajes planetarios
Además de las tres condiciones básicas anteriores, puede haber un problema de interferencia entre el engranaje interno C y los engranajes del planeta B. Vea la Sección 4.2 Engranajes internos

¿Qué es el Grado de dureza de los tornillos y cómo se clasifican?

La clase de resistencia de los tornillos según ISO 898-1 viene definida en tablas y está marcada en la cabeza del tornillo convencionalmente. La resistencia a la tracción es la resistencia al estiramiento ocasionado por la fuerza de apriete que se produce al girarlo. En la cabeza de los tornillos también se especifica la dureza o el grado del tornillo, dependiendo del material utilizado y la aplicación que se le dará al tornillo, según las unidades métricas que se estén utilizando y la aplicación del tornillo así será su grado, en la Figura 14 se observa la equivalencia del grado en el sistema inglés, el sistema métrico y para los tornillos estructurales.

También existe el grado 12, sistema inglés y 12.9 sistema métrico, para la fabricación de estos tornillos se utilizan aceros súper aleados y se identifican con ocho líneas marcadas en la cabeza del tornillo, sistema inglés y con el número 12.9 en el sistema métrico. La clase de resistencia de los tornillos según ISO 898-1 viene definida en tablas y está marcada en la cabeza del tornillo convencionalmente. La resistencia a la tracción es la resistencia al estiramiento ocasionado por la fuerza de apriete que se produce al girarlo.

El tornillo se identifica con el siguiente código para designar sus propiedades:

  • La primera cifra se multiplica por cien (100) obteniendo el valor de la resistencia a la tracción. Unidades dimensionales en N/mm2  – newton por milímetro cuadrado -.
  • La segunda cifra es diez (10) veces el cociente del límite elástico inferior (o límite elástico convencional al 0.2%) y a la resistencia a la tracción.

Las dos cifras separadas multiplicadas por diez (10) no dan el valor del límite elástico aparente en N/mm2.

identificacion
pernos
  1. Además del marcado de grado indicado, todos los grados, excepto A563 grados O, A y B, deben marcarse para la identificación del fabricante.
  2. Las marcas que se muestran para todos los grados de tuercas A194 son para tuercas forjadas en frío y forjadas en caliente. Cuando las tuercas se mecanizan a partir de material de barra, la tuerca debe marcarse adicionalmente con la letra ‘B’.
  3. No se requiere que las tuercas estén marcadas a menos que el comprador lo especifique Cuando está marcado, la marca de identificación debe ser la letra de grado O, A o B.
  4. Las propiedades que se muestran son las de las tuercas hexagonales de rosca gruesa no revestidas o no revestidas.
  5. Las propiedades que se muestran son las de tuercas hexagonales pesadas de rosca gruesa.
  6. Las propiedades que se muestran son las de tuercas hexagonales pesadas de rosca gruesa.
  7. Las propiedades que se muestran son las de tuercas hexagonales gruesas de rosca gruesa de 8 pasos.
  8. Las durezas son números de dureza Brinell.
  9. El fabricante de la tuerca, a su elección, puede agregar otras marcas para indicar el uso de acero resistente a la corrosión atmosférica.
  10. Especificaciones –
  11. ASTM A563 – Tuercas de acero al carbono y aleado.

¿Cómo determinar las dimensiones de las roscas para Bujías?

Las Roscas de bujías según algunas normas como ISO 28741 esta hechas a mediante la norma métrica aunque también están en pulgadas y se aplica en Vehículos de carretera como ya sabemos las las roscas de las bujías van maquinadas en la culata del motor para asì cumplir con su función las dimensiones son las siguientes

Dimensiones de roscas

MedidaDiámetro Mayor (mm)Diámetro menor (mm)Paso (mm)Taladro (mm)Profundidad (mm)
M10 x 1.0109.153 - 8.91719.265
M12 x 1.251210.912 - 10.6471.2510.972
M14 x 1.251412.912 - 12.6471.2512.972
M18 x 1.51816.676 - 16.3761.516.7568

⚙ ¿Qué es un Sprocket y cómo se diseñan? ⚙


Las ruedas dentadas o sprockets son piezas giratorias con dientes que se usan junto con una cadena y, casi siempre, al menos una con otra. Piñón para transmitir el par. Los sprockets y la cadena se pueden usar para cambiar la velocidad, el par o la dirección original de un motor.

La forma del diente de una rueda dentada se deriva de la trayectoria geométrica descrita por el rodillo de la cadena a medida que se mueve a través de la línea de cabeceo y el círculo de cabeceo para una rueda dentada y un paso de cadena determinados. La forma de la forma del diente está matemáticamente relacionado con el paso de cadena (P), el número de dientes en la rueda dentada (N) y el Diámetro del rodillo (Dr). Las fórmulas para la curva de asiento, el radio R y el radio de la curva de cobertura F Incluya los espacios libres necesarios para permitir un acoplamiento suave entre los rodillos de la cadena y la rueda dentada dientes.

Tipos de eje de Sprocket

Tipo de eje indica el núcleo de la rueda dentada. Cada tipo está diseñado para una necesidad específica.

  • El tipo A no tiene un eje como parte de la rueda dentada. La rueda debe montarse en una brida, eje u otro dispositivo de sujeción.
  • El tipo B tiene el eje que se extiende a un lado de la rueda. Este tipo se encuentra generalmente en piñones de tamaño pequeño e intermedio.
  • El tipo C tiene un eje de igual longitud en ambos lados de la rueda. El tipo C generalmente se encuentra en piñones de gran diámetro o muy pesados.El tipo C también es más común para piñones de clase de ingeniería.
  • C Offset indica un cubo de dos lados que está descentrado porque las longitudes del eje no son iguales

Dimensiones de los dientes de los Sprockets

¿Qué es una broca y cuál es su función?

Una broca es una herramienta metálica de corte que crea orificios y a su vez perforaciones circulares en diversos materiales cuando se coloca en herramientas como taladro, berbiquí u otra máquina como destornilladores de impacto e inclusive fresadoras . Su función es formar un orificio o cavidad cilíndrica.

Las brocas generalmente poseen razones elevadas de longitud a diámetro, de ahí su capacidad de manufacturar barrenos relativamente profundos. to hace que las brocas tengan ciertas propiedades de deformación plástica por su cierta flexibilidad y tienden a provocar rupturas o provocar barrenos con dimensiones incorrectas.

El diámetro del barreno hecho por el taladro es un poco mayor que el de la broca, como puede notarse al mirar que una broca se retira con facilidad de la perforación que se manufacturo.

Broca convencional o de giro

La broca de giro es la mas convencional, la geometría del punto de la broca es tal que el angulo de ataque es normal y la velocidad del borde que es cortante son diferentes con la longitud desde el centro de la broca.

En las ranuras que tiene la broca que forman un tipo espiral se ocupan para drenar la viruta producida por el proceso que se le esta dando a la pieza, aquí funciona como un canal de la punta de la broca hacia arriba o afuera expulsándolas y que estas puedan seguir expulsando mas material y no se atasque, también permiten que el fluido de corte alcance los bordes cortantes.

Las brocas por naturaleza de ellas mismas tienden a dejar viruta en la superficie inferior de la parte perforada y frecuentemente se necesitan otro cierto de operaciones para evitar estas.

Las brocas también deben ser diseñadas de tal manera que sean rompe virutas es decir que sea capaz de estar cortando virutas a ciertas longitudes esto para evitar que las virutas sean muy largas y no haya problemas con la maquina

Los ángulos con los cuales son diseñadas las brocas por lo general buscan evitar calentamiento y que se optimice el corte y paso de viruta.

¿Qué son los rodamientos, cómo funcionan y cómo se diseñan?

Los rodamientos/baleros/cojinetes es un dispositivo mecánico que facilita el movimiento y reduce la fricción entre componentes/ entre el eje y las piezas que están conectadas a el

En los rodamientos el movimiento rotativo, según el sentido del esfuerzo que soporta, puede ser axial, radial, o una combinación de ambos.

Tipos de rodamientos

Un rodamiento radial es el que soporta esfuerzos radiales, que son esfuerzos de dirección normal a la dirección que pasa por el centro de su eje, como por ejemplo una rueda; es axial si soporta esfuerzos en la dirección de su eje, como por ejemplo en los quicios o bisagras de puertas y ventanas; y axial-radial si los puede soportar en los dos, de forma alternativa o combinada.

Tipos de rodamientos

Rígido de bolas: se usa en un amplio número de productos. Su diseño es sencillo, no es posible desmontarlo y se caracteriza por poder funcionar a velocidades considerablemente altas sin requerir un mantenimiento muy estricto o frecuente. Además, las bolas de su estructura benefician la transmisión de la potencia. Su popularidad se debe también a su bajo precio;

Bolas de contacto angular: su diseño está pensado de forma tal que la presión que ejercen las bolas (que se presentan en una única hilera) se aplica en un ángulo oblicuo al eje, lo cual vuelve este tipo de rodamiento muy adecuado para las cargas axiales considerables, y también las radiales. Si se desea que la máquina reciba la carga axial en sentido contrario, entonces es necesario montar el rodamiento contrapuesto a otro;

De agujas: posee rodillos de forma cilíndrica, largos y muy finos. Si bien su sección es de un tamaño discreto, su capacidad de carga es muy grande y se usa muy a menudo cuando no existe un gran espacio radial. Una de sus aplicaciones más comunes es la estructura de los pedales de bicicletas;

Rodillos cónicos: se trata de un modelo especialmente apto para soportar cargas axiales y radiales de forma simultánea, dado que sus caminos de rodadura y sus rodillos se encuentran en un ángulo oblicuo. También existe una versión con un ángulo muy abierto que se utiliza cuando la carga axial es considerable. Cabe mencionar que este rodamiento puede desmontarse, dejando por separado los aros interior y exterior, así como los rodillos;

Rodillos cilíndricos de empuje: entre sus características principales se encuentra su especial resistencia a las cargas axiales de gran peso, su insensibilidad a los choques, su fuerza y el hecho de demandar poco espacio axial. Sólo pueden admitir una dirección de cargas axiales. Este tipo de rodamiento se usa especialmente para reemplazar modelos que utilizan bolas de empuje incapaces de aceptar las cargas necesarias;

Rodillos a rótula: posee una fila de rodillos ubicados de forma oblicua, que giran sobre el aro, el cual se apoya en el soporte correspondiente. Una pestaña del aro guía los rodillos en su movimiento de rotación. Como resultado, este tipo de rodamiento es muy adecuado para soportar pesadas cargas. Su alineación es manual y cuenta con una velocidad de giro muy alta, incluso cuando la carga es considerable. A diferencia de otras clases de rodamiento axial, éste tiene la capacidad de hacer frente a cargas radiales.

Los rodamientos de bolas a rótula, los rodamientos de una hilera de bolas y los rodamientos de agujas de empuje son otros de los que se emplean con frecuencia en diferentes máquinas, como los motores, transmisiones, sistema de suspensión entre otros elementos mecánicos automotrices

Ajuste de rodamientos

El ajuste en los rodillos ayuda principalmente con su nomenclatura a identificar que posición y juego lleva el rodamiento al entrar en contacto con la pieza en donde se va a ensamblar, se indica una tolerancia de juego axial y esta va determinado por el fabricante del mecanismo y del rodamiento para dar el funcionamiento adecuado que requiere el ensamblaje

Designación de los rodamientos

🔩 ¿Qué es una rosca WithWorth y cómo se diseñan? 🔩

El sistema Whitworth, normalizado en Francia con el nombre de paso de gas, es la forma de rosca de mayor antigüedad conocida. Es debida a Joseph Whitworth, que la hizo adoptar por el instituto de ingenieros civiles de Inglaterra en 1841. Sus dimensiones básicas se expresan en pulgadas inglesas. Su forma y dimensiones aparecen detalladas en la norma DIN 11.

El sistema de roscas Whitworth se utiliza, para reparar la maquinarias antiguas y tiene un filete de rosca más grueso que el filete de rosca métrico.

Roscas de unión para tubería

Rosca normal británica para tubería (BSP) o rosca “gas”

Derivada de la rosca Whitworth original (con poco uso en la actualidad) tiene forma de triángulo isósceles y el ángulo que forman los flancos de los filetes es de 55º. El lado menor del triángulo es igual al paso, y las crestas y valles son redondeados. El diámetro nominal o exterior de la rosca se expresa en pulgadas, y el paso está dado por el número de hilos contenidos en una pulgada, por lo que se expresa en hilos por pulgada.

Rosca normal británica

Rosca normal británica

Se usa comúnmente en plomería de baja presión, aunque no se recomienda para sistemas hidráulicos de media y alta presión. De acuerdo a su diseño presenta dos variantes:

Rosca cilíndrica (o recta o paralela, BSPP): se monta en el mismo roscado cilíndrico. La estanqueidad queda asegurada por una junta tórica o arandela. Se denomina con la letra G seguida del diámetro nominal del tubo en pulgadas según norma ISO 228-1. Por ejemplo:

G 7

Rosca cónica (BSPT): se monta en el mismo roscado cilíndrico o cónico. La estanqueidad queda asegurada por un recubrimiento previo en la rosca. Se denomina con la letra R seguida del diámetro nominal del tubo en pulgadas según norma ISO 7-1. Por ejemplo:

R 1/8

La figura de abajo representa las conexiones y compatibilidades entre los tipos de roscas BSPP y BSPT.

Roscas BSPP - BSPT

Roscas BSPP – BSPT

🔩 Cómo se determinan las roscas métricas ISO DIN 13?

Las roscas métricas ya sena internas o externas, gruesa o fina se encuentran en la mayoría de las uniones de elementos y ensambles ya sen automotrices principalmente en nuestra rama o en casi todo lo que podemos ver a nuestro al rededor, esta clase de sujetadores son los más comunes por su simplicidad y utilizado en la mayor parte del mundo

La clasificación de las roscas métricas se dan por el paso o pitch de las roscas métricas no es mas que la distancia entre puntos en dientes adyacentes

Las roscas métricas se determinan o clasifican en una mezcla de paso diametral (pitch) que se caracteriza una de otra por el paso aplicado para la especificación del diámetro

Como en todos los tipos de cuerdas existentes hay diferentes tipos ya sea en unidad de medida en lado de acoplamiento y diseño de estas

Tipos de roscas por entradas: Sencillas, dobles y triples
Sentido de acoplamiento de rosca

Diámetro nominal: D = d
Paso: P
D1 = d2 – 2 · (H/2 – H/4) = d – 2·H1 = d – 1,082532·P
Diámetro de francos: D2 = d2 = d – 3/4 · H = d – 0,649519 · P
Diámetro del núcleo: d3 = d2 – 2 · (H/2 – H/6) = d – 1,226869 · P
Diámetro del núcleo: d3 = d1 – H/6 (según la norma DIN ISO 724)
H = (raiz(3)/2)·P = 0,866025 · P
Profundidad portante de rosca: H1 = (D – D1)/2 = 5/8 · H = 0,541266·P
Profundidad de rosca: h3 = (d – d3)/2 = 17/24 · H = 0,613435·P
Radio fondo de rosca: R = H/6 = 0,144338 · P

🔩 Cómo se determinan las cuerdas estándar unificadas (Medida en pulgadas Unified Thread Standard (UTS) 🔩

En este pequeño articulo nos enfocaremos en las cuerdas estándar unificadas que no es mas que una norma que aplica para los tornillos en medida estándar, y que muchas veces es un poco complicada entender a lo que nos hace referencia, es por ello que aprenderás en esta ocasiona su nomenclatura así como la forma en que debes diseñarlos

Primero comencemos con la nomenclatura que podemos encontrar con las cuerdas estandar

Ahora vamos a visualizar como podemos determinar sus medidas y cuales son las variables que tenemos que tener en cuenta para su diseño

Qué son las Levas, cuál es su función y cómo se diseñan?

Leva: Es un mecanismo que genera movimiento deseado en un seguidor por medio de contacto directo. Por lo general las Levas van montados en ejes (arboles) rotatorios aunque pueden ser empleadas inmóviles y el seguidor sea el que se mueve el rededor de ellas. Cambien pueden producir movimiento oscilatorio o pueden convertir movimientos de diferentes maneras

La forma de la leva es determinada por el movimiento del seguidor. En la ingeniería las Levas tienen muchos beneficios al emplearse a diferencia de los mecanismos articulados de cuatro barras de cinemática

Comencemos por ver los tipos de seguidores:

Gráficas de movimiento de levas

DIAGRAMA DE DESPLAZAMIENTO
El diagrama de desplazamiento “y = f (θ)” representa, en el caso más general, la posición del seguidor respecto de la posición de la leva. Por ejemplo en una leva de placa con seguidor de movimiento rectilíneo alternativo, representaría la posición del seguidor respecto del ángulo girado por la leva, pero en otros casos, tanto “y” como “θ”, pueden ser desplazamientos lineales o angulares.

Diagrama de desplazamiento.

Un movimiento muy típico a conseguir por medio de un mecanismo de leva es el movimiento uniforme en el cual la velocidad del seguidor será constante siempre que sea constante la velocidad de la leva, (quizás sería mejor llamarlo movimiento proporcional). Este tipo de movimiento queda reflejado en el diagrama de desplazamiento por medio de un segmento rectilíneo.

Desplazamientos, velocidades y aceleraciones del seguidor
Si se tuviese una leva con la que se pretende, por ejemplo, realizar: una subida con movimiento uniforme, una detención y finalmente un retorno, y no se tomase ningún tipo de precaución resultaría que podrían aparecer aceleraciones del seguidor tendiendo a infinito, tal como se ve en la figura
Si la aceleración del seguidor tiende a infinito, también lo harán las fuerzas de inercia, con lo que llegarían a romperse las piezas que componen la leva. Como esto es inadmisible, se debe prever un diagrama de desplazamiento que no produzca discontinuidades en el diagrama de velocidades.
Para suavizar el inicio o final de un movimiento uniforme se suele utilizar una rama de parábola, consiguiendo que las pendientes de los tramos de parábola coincidan con la pendiente del movimiento uniforme.

Tramos de parábola. a) Unión de movimiento uniforme y b) dibujo del tramo.
Cuando se desea realizar un desplazamiento del seguidor de subida y bajada sin detenciones, un movimiento muy adecuado es el armónico. ya que este tipo de movimiento tiene velocidades y aceleraciones que son funciones continuas.

Diagrama de desplazamiento con movimiento armónico

Si se desea que el seguidor realice unos desplazamientos de subida y bajada entre detenciones, un movimiento adecuado es el cicloidal, puesto que este movimiento tiene aceleraciones nulas al inicio y al final, correspondiéndose con las aceleraciones nulas de las detenciones.

Diagrama de desplazamiento con movimiento cicloidal

Para aprender más del tema te dejamos material de descarga

DESCARGA AQUI:

Qué son los engranes y cuál es su función y cómo se diseñan?

Resultado de imagen para engranajes catia

La función de un engrane radica en la transmisión de movimiento ya sea rotatorio o reciprocante de una maquinaria a otra y donde requiere reducir o aumentar las revoluciones de un eje

Los engranes se caracterizan por ser cilíndricos o conos rodantes que poseen dientes en la superficie de contacto para que se genere un movimiento positivo

Los engranes son los mas eficaces debido a su durabilidad y resistencia de todos los transmisores mecánicos. Es por eso que se utilizan engranes en lugar de bandas o cadenas en transmisiones automotrices a excepción de la transmisión CVT que se acciona por una correa o como las bicicletas

Image may contain: text
No photo description available.
Image may contain: text
No photo description available.

Material de descarga: DESCARGA AQUI ⬇⬇⬇

Temporada 1| Capitulo 1| Como empezar a trabajar con Diseño Mecánico 3D en Solidworks? | Desde 0

TUTORIAL DE YOUTUBE CAPITULO 1

Como se vio en el vídeo aquí vamos dejar algunos buenos artículos que vamos a estar utilizando a lo largo del vídeo , así que es muy importante que los tengan descargados, y muy atentos con todo lo que se publica, otra cuestión que nos gustaría aclarar es que en los vídeos que vayamos subiendo aquí iremos dejando el material ya que en youtube por temas de copyright podemos ocasionar un altercado, sin mas que decir , esperemos que disfruten el curso, estará muy enfocado a piezas automotrices, con el fin de enfocarnos en esa materia

1.- LIBRO DIBUJO Y DISEÑO EN LA INGENIERÍA

2.- NORMA ASME 14.5

3.- Comparación entre los símbolos de la ASME(ANSI),ISO,CSA